K používání a měření webu využíváme cookies. Používáním tohoto webu souhlasíte se způsobem, jakým s cookies nakládáme. Další informace

Spektroskopie

Spektroskopie

Optická spektroskopie je odvětví fyziky, které se zabývá studiem interakce světla s látkou. Jejím cílem je získat optické spektrum, tj. závislost intenzity látkou absorbovaného, odraženého, emitovaného nebo rozptýleného záření na vlnové délce, ze kterého pak vyplývají vlastnosti studovaného materiálu.

Snímání kompletní excitační-emisní mapy

Snímání kompletní excitační-emisní mapy

Dvourozměrná excitační-emisní spektra se stávají stále více žádaným výstupem při studiu fotoluminiscenčních materiálů. K získání kompletní excitační-emisní mapy (EEM = Excitation-Emission Map) je třeba systematicky měnit vlnovou délku buzení a pro každé jednotlivé nastavení zaznamenat emisní spektrum. Při použití rychlého CCD detektoru lze získat EEM ve velmi krátkém čase.

Potlačení parazitního signálu pomocí dvojitého monochromátoru

Potlačení parazitního signálu pomocí dvojitého monochromátoru

U monochromátorů se pod pojmem parazitní rozptýlené světlo (stray light) rozumí nežádoucí signál, které prochází monochromátorem společně s požadovaným (nastaveným) spektrálním pásem. Moderní monochromátory mají automatický karusel s filtry pro odstranění vyšších difrakčních řádů. Rovněž používají optické prvky s vysokou kvalitou a nízkou úrovní rozptylu. Kromě toho lze parazitní signál výrazně potlačit použitím dvojitého monochromátoru.

Měření a porovnávání barev

Měření a porovnávání barev

Měření a porovnávání barev dnes slouží především k rychlé a jednoduché kontrole kvality jednotlivých výrobků (změna bělosti oděvních látek, barva potravin, konzistence světelných zdrojů v komerčním osvětlení, porovnávání odlišných šarží). Modulární sestavy pro měření barev lze snadno přizpůsobit širokému spektru typů vzorků.

Měření optických spekter

Měření optických spekter

Studium absorpce, luminiscence, propustnosti, odrazu a rozptylu optického záření patří mezi nejčastější spektroskopická měření. Umožňují efektivně a nedestruktivně získávat informace o studované látce. Není proto divu, že neustále dochází k jejich zdokonalování a obměňování.

Měření doby života

Měření doby života

Měření doby života, nebo také zhášení, je typickým příkladem toho, jak nám studium časového vývoje optických vlastností (časově rozlišená spektroskopie) pomáhá identifikovat a popsat mikroskopické procesy probíhající ve zkoumaných materiálech.